martes, 24 de marzo de 2020

TEORÍA DE CONJUNTOS



La teoría de conjuntos es una rama de la lógica matemática que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.1
La teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: númerosfuncionesfiguras geométricas, etc; gracias a las herramientas de la lógica, permite estudiar los fundamentos. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica.
El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas (puras) del infinito en la segunda mitad del siglo 1531, precedido por algunas ideas de Bernhard Bolzano e influido por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand Russell, Bolovin Bolovan y Abraham Fraenkel.

No hay comentarios:

Publicar un comentario

Orientaciones para el público por coronavirus (COVID-19)

En pro de colaborar en la prevención de la extensión del brote de COVID 19 ponemos a su disposición  el link de la Organización mundial de...